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Supervised Learning 
Algorithms
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Exam /presentation

▪ 15.05.25

▪ 45 min

▪ Without any supporting material

▪ Final project presentations

▪ 22.05.25 (no class on 29.05 and no excercise on 30.05)

▪ Guest lecture on 08.05.25
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4Recap: Basic principles neural network

Feedforward of information

Backpropagation of errors

Gradient descent

▪ Objective: The primary objective 

of gradient descent is to find the 

set of parameters that minimizes 

the objective function.

▪ Gradient: The gradient of the 

function at a particular point is a 

vector that points in the direction 

of the steepest ascent. By 

moving in the opposite direction 

of the gradient, we move 

towards the minimum.
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Supervised learning
algorithms
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Summary 26

▪ Support Vector Machines

▪ Naive Bayes

▪ Decision trees

▪ Ensembles / bagging / boosting
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Support Vector Machine
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Example

▪ Imagine a civil engineering project aimed at developing a new residential area near a hill 

slope known for its landslide activity. An SVM model is trained using historical data on 

landslides in the region, incorporating factors such as slope, soil type, rainfall intensity, and 

vegetation cover. The trained model is then used to assess the susceptibility of the new 

area to landslides, providing valuable information for planning and mitigation strategies, 

such as reinforcing slopes or altering drainage patterns to reduce risk.
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29SVM
Introduction

Why this additional classification technique ?

▪ Easy to implement and test

▪ It can provide good results on small datasets

▪ Has sound theoretical guarantees

▪ It allows for a geometric way to think about supervised learning

▪ A nice review of what we have learned related to loss functions, optimisation…



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

30SVM
Introduction

Classification Algorithm:  label as 1

: label as -1
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31SVM
Introduction

Which line?

Classification Algorithm:  label as 1

: label as -1

A:1

A:2

A:3

A:4
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33SVM
Introduction

What’s SVM?

Classification Algorithm

Maximization of the margin

+
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36SVM
Introduction

Why is margin maximization interesting?

A
‘A’ far from the separation line

We are confident that ‘A’ is classified as blue

Small change in the separation line will 

not change this classification
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38SVM
Introduction

Why margin maximization is interesting?

Small change in the separation line can 

change this classification

B ‘B’ close from the separation line

We are less confident that ‘B’ is classified as blue
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39SVM
Hinge Loss

In this lecture: 

▪ labels 𝑦 ∈ {−1,1}

▪ predicted values 𝑓(𝑥) ∈ ℝ (also referred to as 𝑦
̂
)

f(x)<0 f(x)>0

y=-1 Correct Incorrect

y=1 Incorrect Correct

So:

▪ 𝑦 ⋅ 𝑓(𝑥) > 0 →correctly classified

▪ 𝑦 ⋅ 𝑓(𝑥) < 0 →incorrectly classified
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40SVM
Hinge Loss

𝑓(𝑥) > 0𝑓(𝑥) < 0Correctly classified

Misclassified

𝑓(𝑥) : Predicted value ( also referred as 𝑦
̂
)
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41SVM
Hinge Loss

𝑦𝑓(𝑥) > 0𝑦𝑓(𝑥) < 0Correctly classified

Misclassified

bringing all our misclassified points on one side of the decision boundary 
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43SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss

𝐻𝑖𝑛𝑔𝑒 𝑥, 𝑦 = 𝑚𝑎𝑥 0,1 − 𝑦. 𝑓 𝑥 , 𝑙𝑎𝑏𝑒𝑙𝑠 𝑦 ∈ {−1,1}
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44SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss
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45SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

46SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss
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47SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss
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48SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss
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49SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss
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50SVM

Link with the Hinge function

Optimal hyperplane separation

1 2

𝑦𝑓(𝑥)
0-1-2

𝐿
𝑜
𝑠𝑠

1

Hinge Loss

The margin
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51SVM
Alternative view of logistic regression

1

Remember Logistic Loss function?

The Hinge Loss

𝐻𝑖𝑛𝑔𝑒 𝑥, 𝑦 = 𝑚𝑎𝑥 0,1 − 𝑦. 𝑓 𝑥 , 𝑙𝑎𝑏𝑒𝑙𝑠 𝑦 ∈ {−1,1}

« Maximum-margin » classifier

Logistic loss 

= −
1

𝑁
∑
𝑖=1

𝑁

𝑌𝑖log(𝑌𝑖
̂

)
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52SVM
Hinge Loss

𝑦𝑓(𝑥)

0 1 2-1-2

𝐿
𝑜
𝑠𝑠

1

MSE

logistic

Left side of the Logistic loss 

= −
1

𝑁
∑
𝑖=1

𝑁

𝑌𝑖log(𝑌𝑖
̂

)
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53SVM

Classification Algorithm

Based on maximizing margin

What’s SVM?

Margin : Defined as the width that the boundary

could increase by before hitting a datapoint

Optimal hyperplane separation
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54SVM
Optimal hyperplane separation

How can we formulate this problem?

Negative example : -1

Positive example :  1
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55SVM
Optimal hyperplane separation

First we model our separation hyperplane 

Negative example : -1

Positive example :  1 𝐰𝑇𝐱 + 𝑏 = 0
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56SVM
Optimal hyperplane separation

Then we model our margin limits

Negative example : -1

Positive example :  1 𝐰𝑇𝐱 + 𝑏 = 0

𝐰𝑇𝐱 + 𝑏 = +1

𝐰𝑇𝐱 + 𝑏 = −1
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57SVM
Optimal hyperplane separation

We obtain our constraints

Negative example : -1

Positive example :  1 𝐰𝑇𝐱 + 𝑏 = 0

𝐰𝑇𝐱 + 𝑏 = +1

𝐰𝑇𝐱 + 𝑏 = −1

The margin on either side of the 

hyperplane satisfy

𝐰𝑇𝐱 + 𝑏 = ±1
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58SVM
Optimal hyperplane separation

Maximizing this condition is equivalent to minimizing
∥𝐰∥

2

Better to minimize a square form :
∥𝐰∥

2

2

We obtain our objective criteria

The margin between two classes is at least
2

∥𝐰∥
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60SVM
Optimal hyperplane separation

We obtain an optimization problem:

𝑚𝑖𝑛
𝐰,𝑏

∥ 𝐰 ∥

2

2

𝐰𝑇𝐱(𝑖) + 𝑏 ≤ −1 when 𝑦(𝑖) = −1

𝐰𝑇𝐱(𝑖) + 𝑏 ≥ 1 when 𝑦(𝑖) = +1
𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 when 𝑖 = 1,2, . . . , 𝑀

Objective

Constraints

This is hard-margin SVM, and it works only for separable data

Next slides are optional and develop the formulation of 

hard-margin SVM 
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64SVM

What should we do ?
Constraints relaxed by 

slack variables 𝜉𝑖

𝜉1

𝜉2

𝜉3

𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖𝑠. 𝑡𝜉𝑖
≥ 0 ∀ 𝑖 = 1,2, . . . , 𝑁

We need to add a penalty for 

too large slack variable

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

C > 0 weight the influence of the penalty term

Find trade off  between maximizing margin and minimizing the classification errors

Dealing with non-separable data

M : number of examples in the margin

or misclassified
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65SVM
Dealing with non-separable data

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

Control size of the margin

Control number of misclassification

Note that : 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ⇔ 𝜉𝑖 ≥ 1 − 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏)

Because 𝜉𝑖 ≥ 0 Note that : 𝜉𝑖 = 𝑚𝑎𝑥(0,1 − 𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏))

𝐰𝑇𝐱(𝑖) + 𝑏 ≤ −1 + 𝜉𝑖 when 𝑦(𝑖) = −1

𝐰𝑇𝐱(𝑖) + 𝑏 ≥ 1 − 𝜉𝑖 when 𝑦(𝑖) = +1
𝑦(𝑖)(𝐰𝑇𝐱(𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 when 𝑖 = 1,2, . . . , 𝑀
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66SVM
Dealing with non-separable data

Regularization term

Hinge loss

We can reformulate into a form more adapted for learning as :

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰) +

𝜆

2
∥ 𝐰 ∥2)

𝑚𝑖𝑛
𝐰,𝑏

(
∥ 𝐰 ∥

2

2

+
𝐶

𝑁
∑
𝑖=1

𝑁

𝜉𝑖)

Control size of the margin

Control number of misclassification
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67SVM
Dealing with non-separable data

𝑚𝑖𝑛
𝐰

(
𝜆

2
∥ 𝐰 ∥2)

Leads to :

1. A separating hyperplane

2. A scaling of 𝐰 so that no point of the data is in the margin

Guarantee that separating hyperplane and scaling for which

the margin is the largest

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰)
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68SVM
Dealing with non-separable data

Note that this function is convex

So we can use SGD to optimize it efficiently 

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝑚𝑎𝑥(0,1 − 𝑦(𝑛)𝐱(𝑛)
𝑇
𝐰) +

𝜆

2
∥ 𝐰 ∥2)
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69SVM
Dealing with non-separable data

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

[1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰]+ +
𝜆

2
∥ 𝐰 ∥2)

To lead to a more efficient implementation 

we use the dual form of our problem

Primal problem Dual problem

Two versions of the same problem

More explanation on duality for SVM

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛(1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰) +
𝜆

2
∥ 𝐰 ∥2)

Note that : 𝑚𝑎𝑥(0, 𝑓(𝑥)) = [𝑓(𝑥)]+

https://www.svm-tutorial.com/2016/09/duality-lagrange-multipliers/
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70SVM
Dealing with non-separable data

The 𝛼𝑛 are the support vectors !

The support vectors are the nearest 

samples from the hyperplane

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛(1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰) +
𝜆

2
∥ 𝐰 ∥2)
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71SVM
Dealing with non-separable data

𝛼𝑛 = 0 when 1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰 < 0

Examples that lie on the correct side 

and outside of the margin

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛(1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰) +
𝜆

2
∥ 𝐰 ∥2)
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72SVM
Dealing with non-separable data

𝛼𝑛 ∈ {0,1} when 1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰 = 0

Examples that lie on the correct side 

and just on of the margin

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛[1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰]+ +
𝜆

2
∥ 𝐰 ∥2)
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73SVM
Dealing with non-separable data

𝑚𝑎𝑥
𝛼∈{0,1}

𝑚𝑖𝑛
𝐰

( ∑
𝑛=1

𝑁

𝛼𝑛[1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰]+ +
𝜆

2
∥ 𝐰 ∥2)

𝛼𝑛 = 1 when 1 − 𝑦(𝑛)𝐱(𝑛)𝑇𝐰 > 0

Examples that lie strictly inside the 

margin, or on the wrong side
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75SVM

We introduce the kernel 

trick

Dealing with non-linear classification
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76SVM
Dealing with non-linear classification

𝑚𝑎𝑥
𝛼∈[0,1]𝑁

𝛼𝑇𝟏 −
1

2𝜆
𝛼𝑇𝐘𝐗𝐗𝑇𝐘𝛼

We saw that in this alternative formulation the data only enters in the

form of a ‘’kernel‘’ 𝐊 = 𝐗𝐗𝑇

By definition, a ‘’kernel’’ 𝐊 = 𝐗𝐗𝑇 is equivalent to an inner product

There exists an infinity of inner products dependent to the geometry of

spaces where we use it

𝑋: [𝑁 × 𝐷] with 𝑁 the number of samples and 𝐷 the number of features
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77SVM
Dealing with non-linear classification
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78SVM
Dealing with non-linear classification
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79SVM
Dealing with non-linear classification
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80SVM
Dealing with non-linear classification
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81SVM
Dealing with non-linear classification

Kernel Equation

Linear 𝐾(𝑥, 𝑦) = 𝑥𝑦

Sigmoid 𝐾(𝑥, 𝑦) = tanh(𝑎𝑥𝑦 + 𝑏)

Polynomial 𝐾(𝑥, 𝑦) = (1 + 𝑥𝑦)𝑑

KMOD

𝐾(𝑥, 𝑦) = 𝑎[exp(
𝛾

||𝑥 − 𝑦||2 + 𝑠𝑖𝑔𝑚𝑎2
) − 1]RBF

𝐾(𝑥, 𝑦) = exp(−𝑎||𝑥 − 𝑦||)Exponential RBF

𝐾(𝑥, 𝑦) = exp(−𝑎||𝑥 − 𝑦||2)



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

82

Dealing with non-linear classification

SVM
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83

Live demos:

Dash-gallery.plotly.host/dash-svm/
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84SVM
Resources

▪ Book chap. 12:

▪ https://mml-book.github.io/

▪ Explanation video: 

▪ https://www.youtube.com/watch?v=efR1C6CvhmE

▪ Tutorial on SVM: 

▪ http://lasa.epfl.ch/teaching/lectures/ML_Phd/Notes/nu-SVM-SVR.pdf

▪ Other slides on SVM:

▪ http://lasa.epfl.ch/teaching/lectures/ML_Phd/Slides/SVM.pdf

▪ Visualization:

▪ https://www.cristiandima.com/basics-of-support-vector-machines/

https://mml-book.github.io/
https://www.youtube.com/watch?v=efR1C6CvhmE
http://lasa.epfl.ch/teaching/lectures/ML_Phd/Notes/nu-SVM-SVR.pdf
http://lasa.epfl.ch/teaching/lectures/ML_Phd/Slides/SVM.pdf
https://www.cristiandima.com/basics-of-support-vector-machines/


O
. 

F
in

k
 /

A
.

A
la

h
i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

85

Naive Bayes
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Example Structural Health Monitoring

▪ Let's consider a simplified case study where the goal is to develop a classifier to determine 

the health status of a bridge based on two primary indicators: vibration frequency 

deviations (measured in Hz) and maximum daily temperature variations (measured in 

degrees Celsius). For simplicity, we classify the bridge's condition into three categories: 

Good, Minor Damage, and Major Damage.
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▪ Data Assumption

▪ Assume we have historical data that indicate the following probabilities:

▪ Prior Probabilities of Each Condition:

• P(Good)=0.70

• P(Minor Damage)=0.20

• P(Major Damage)=0.10

▪ Likelihood of Vibration Frequency Deviations (Hz):

• Good Condition: Normally around 0.5 Hz deviation.

• Minor Damage: Deviations around 2 Hz.

• Major Damage: Deviations exceed 4 Hz.

▪ Likelihood of Maximum Daily Temperature Variation (°C):

• Good Condition: Variation within ±5°C.

• Minor Damage: Variation within ±10°C.

• Major Damage: Variation exceeds ±15°C.

Example Structural Health Monitoring
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▪ For simplicity, let's assume we categorize the deviations into "low," "medium," and "high" 

for both features and assign probabilities based on our historical data.

▪ Scenario:

▪ One day, sensors on the bridge report a vibration frequency deviation of 3 Hz and a 

maximum daily temperature variation of 12°C. We need to classify the bridge's condition 

based on this data.

Example Structural Health Monitoring
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89Naive Bayes
Bayes’ theorem

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)

X : Features

𝑦 : Labels/Target
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90Naive Bayes
Bayes’ theorem

Probability to label with 𝑦 knowing 𝑋

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
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91Naive Bayes
Bayes’ theorem

Probability to have this 𝑋 knowing the label 𝑦

𝑃(𝑋|𝑦) is called a generative model

Describes the way to produce data with the same Features distribution

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
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92Naive Bayes
Bayes’ theorem

Probability to label with 𝑦

𝑃(𝑦) is called the prior probability

Describes the probability to encounter the data labeled 𝑦
without considering the 𝑋

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
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93Naive Bayes
Bayes’ theorem

Probability of the 𝑋

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
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94Naive Bayes
Bayes’ theorem

𝑃(𝑦|𝑋) =
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)

This theorem gives us the probability

to be labeled with y knowing features

observation X

We can use this probability for classification



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

95Naive Bayes
Gaussian Naive Bayes

First we can make the assumption that the generative model follows 

a simple gaussian distribution
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96Naive Bayes
Bayes’ theorem

The hard part is finding the generative model

We can make some simplifying assumptions about the form of this model

This is why these methods are called Naive

Second assumption:  Features are independent ! 

First assumption: the generative model follows a simple gaussian distribution
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97

Feature 1

F
e

a
tu

re
 2

Gaussian Naive Bayes

Naive Bayes

Prior : P(BLUE) =  
9

9+8
= 0.53

Prior : P(RED) =  
8

9+8
= 0.47
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98

Feature 1

F
e

a
tu

re
 2

Gaussian Naive Bayes

Naive Bayes

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝑅𝐸𝐷) = 0.004

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝐵𝐿𝑈𝐸) = 0.08

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷) = 0.19

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝐵𝐿𝑈𝐸) = 0.000003



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

99

Feature 1

F
e

a
tu

re
 2

Gaussian Naive Bayes

Naive Bayes

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝑅𝐸𝐷) = 0.004

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝐵𝐿𝑈𝐸) = 0.08

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷) = 0.19

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷) = 0.000003

𝑃𝑟𝑖𝑜𝑟 × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝑅𝐸𝐷) × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷)
= 0.47 × 0.004 × 0.19

= 0.0003572
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100

Feature 1

F
e

a
tu

re
 2

Gaussian Naive Bayes

Naive Bayes

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝑅𝐸𝐷) = 0.004

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝐵𝐿𝑈𝐸) = 0.08

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷) = 0.19

𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷) = 0.000003

Add ln to avoid too small values 

(source of computational error) !!

ln(𝑃𝑟𝑖𝑜𝑟 × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝐵𝐿𝑈𝐸) × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝐵𝐿𝑈𝐸))
= ln(0.53) + ln(0.08) + ln(0.000003)

= −15.9

−15.9 < −7.94

We classify this new point as RED

ln(𝑃𝑟𝑖𝑜𝑟 × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠1|𝑅𝐸𝐷) × 𝑃(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠2|𝑅𝐸𝐷))
= ln(0.47) + ln(0.004) + ln(0.19)

= −7.94
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Example SHM cont.

▪ Let's simplify and assume:

▪ The probability of observing a 3 Hz deviation is:

• P(3 Hz∣Good)=0.1

• P(3 Hz∣Minor Damage)=0.7

• P(3 Hz∣Major Damage)=0.2

▪ The probability of observing a 12°C variation is:

• P(12°C∣Good)=0.05

• P(12°C∣Minor Damage)=0.6

• P(12°C∣Major Damage)=0.35

▪ Calculating Probabilities

▪ To classify the bridge's condition, we calculate the posterior probability for each condition using Bayes' theorem, 

focusing on the product of the likelihood and the prior probability for simplicity.

▪ Let's calculate these probabilities.

▪ Based on the calculated probabilities, the bridge's health condition is classified as follows:

• Good: 3.7%

• Minor Damage: 88.9%

• Major Damage: 7.4%
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102Coding Naive Bayes

Source: A primer to the 42 most commonly used ML algorithms
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103Naive Bayes
Resources

▪ Explanation with code 

▪ https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-

bayes.html

▪ Interactive explanation (To understand Bayes’ theorem and the likelihood)

▪ https://seeing-theory.brown.edu/bayesian-inference/index.html

https://jakevdp.github.io/PythonDataScienceHandbook/05.05-naive-bayes.html
https://seeing-theory.brown.edu/bayesian-inference/index.html
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104

Decision Trees
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Example: earthquake vulnerability assessment 

▪ The goal of an earthquake vulnerability assessment is to evaluate how likely buildings or structures 

are to be damaged in the event of an earthquake. This involves analyzing various factors such as the 

building's age, construction material, height, design, the seismic zone where it's located, soil type, and 

previous maintenance records. A Decision Tree model can be used to classify buildings into different 

categories of vulnerability based on these factors.

▪ Why Use Decision Trees for This Task?

▪ Interpretability: Decision Trees provide clear and interpretable models, which is crucial for safety-

critical applications like structural engineering. Engineers and decision-makers can easily understand 

the basis of the model's classifications.

▪ Handling Different Types of Data: Decision Trees can handle both numerical and categorical data, 

making them suitable for the diverse types of data involved in earthquake vulnerability assessment.

▪ Non-linear Relationships: They can model non-linear relationships between the factors affecting a 

building's vulnerability to earthquakes, which is often the case in real-world scenarios.
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106Decision Trees
Introduction

What is a decision tree?

The student loves this class

True

The student is awesome !

False

The student is slightly less 

than awesome.  :(

Split data based on the answer to a question
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107Decision Trees
Terminology

Root Node

Internal Node

Internal Node Internal Node

Internal Node

Leaf Node

Leaf Node

Leaf Node Leaf Node Leaf Node

Leaf Node

▪ Nodes are checked on a single feature

▪ Branches are feature values

▪ Leaves indicate class label
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108Decision Trees
Penguins example
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109Decision Trees
Penguins example

Culmen length ≤ 43.25

Culmen depth ≤ 15.3 Culmen depth ≤ 16.55

Python output for  sklearn.tree

We select Culmen length as the first discriminative feature

[Adelie, Chinstrap, Gentoo]

Culmen length ≤ 43.25

Gini coefficient in decision trees (also called Gini 

impurity) is a measure of how mixed the classes are in 

a node.

A Gini of 0 means the node is pure (all one class); 

higher values indicate more impurity.



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

110Decision Trees
Penguins example
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111Decision Trees
Penguins example

Culmen length ≤ 43.25

Culmen depth ≤ 15.3 Culmen depth ≤ 16.55

Gentoo Adelie Gentoo Chinstrap

Python output for  sklearn.tree

[Adelie, Chinstrap, Gentoo]

Culmen depth ≤ 16.55
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Penguins example



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

113

Information gain

age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Which feature should we select for the root node ?

Decision Trees

Features Label
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Information gain

age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Which feature should we select for the root node ?
Features

Partition based on feature « credit rating »

Decision Trees

Label
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Information gain

age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Which feature should we select for the root node ?

Other possible partition based on 

feature « student »

We need a method to select the 

best feature to build our first 

partition  

We have multiple choices of 

partition 

Decision Trees

Features Label
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Tree construction

▪ We select the most discriminative Feature

• Discriminative power based on a score:

• Information gain (ID3/C4.5)

• Gini impurity (CART)

▪ We create a node based on this feature

▪ We repeat for each new branch until all the samples are

classified

Decision Trees
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Information gain

At a given branch in the tree, the set of samples S to be classified has P positive
and N negative instances

The entropy of the set S is  : 𝐻(𝑃,𝑁) = −(
𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
) +

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

Note : 𝐻(𝑃,𝑁) = 0 →No uncertainty 𝐻(𝑃,𝑁) = 1 →Maximal uncertainty;

The entropy of the feature A is  : 𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖, 𝑁𝑖)

Feature A partitions S into S1, S2 ,…, Sv

The information gain obtained by splitting S using A is : 𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁) −𝐻(𝐴)

Decision Trees
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Information gain
age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

We start by computing the entropy of each class

𝐻(𝑃,𝑁) = 𝐻(9,5) = 0.94

𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁) − 𝐻(𝐴)
𝐻(𝑃,𝑁) = −(

𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
)+

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖,𝑁𝑖)

Decision Trees
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Information gain We compute the entropy of each sets

Age [<=30]  𝐻(2,3) = 0.97

Age [31…40]  𝐻(4,0) = 0

Age [>40]  𝐻(3,2) = 0.97

Student [yes]  𝐻(6,1) = 0.59

Student [no]  𝐻(3,4) = 0.98

Income [high]  𝐻(2,2) = 1
Income [med]  𝐻(4,2) = 0.92
Income [low]  𝐻(3,1) = 0.81

Rating [fair]  𝐻(6,2) = 0.81

Rating [exc]  𝐻(3,3) = 1

age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

Decision Trees
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Information gain We compute the entropy of each feature
age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

𝐻(𝑎𝑔𝑒) = 𝑝([<= 30])𝐻([<= 30]) + 𝑝([31. . . 40])𝐻([31. . . 40]) + 𝑝([> 40])𝐻([> 40])

= 0.69

𝐻(𝑖𝑛𝑐𝑜𝑚𝑒) = 0.91

𝐻(𝑠𝑡𝑢𝑑𝑒𝑛𝑡) = 0.78

𝐻(𝑟𝑎𝑡𝑖𝑛𝑔) = 0.89

Decision Trees
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Information gain Finally we compute the gain

age income student credit rating buys computer

<=30 high no fair no

<=30 high no excellent no

31…40 high no fair yes

>40 medium no fair yes

>40 low yes fair yes

>40 low yes excellent no

31…40 low yes excellent yes

<=30 medium no fair no

<=30 low yes fair yes

>40 medium yes fair yes

<=30 medium yes excellent yes

31…40 medium no excellent yes

31…40 high yes fair yes

>40 medium no excellent no

𝐺𝑎𝑖𝑛(𝐴𝑔𝑒) = 0.94 − 0.69 = 0.25

𝐺𝑎𝑖𝑛(𝐼𝑛𝑐𝑜𝑚𝑒) = 0.94 − 0.91 = 0.03

𝐺𝑎𝑖𝑛(𝑆𝑡𝑢𝑑𝑒𝑛𝑡) = 0.94 − 0.78 = 0.16

𝐺𝑎𝑖𝑛(𝑅𝑎𝑡𝑖𝑛𝑔) = 0.94 − 0.89 = 0.05

The first node is split on the age

Decision Trees
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Extracting classification rules from trees

Represent the knowledge in the form of IF-THEN rules

▪ One rule is created for each path from the root to a leaf

▪ Each feature-value pair along a path forms a conjunction

▪ The leaf node holds the class prediction

Rules are easier for humans to understand

Example :

IF age = “<=30” AND student = “no”

IF age = “<=30” AND student = “yes”

IF age = “31...40”

IF age = “>40” AND credit_rating = “excellent”

IF age = “>40” AND credit_rating = “fair”

THEN buys_computer = “no”

THEN buys_computer = “yes”

THEN buys_computer = “yes”

THEN buys_computer = “yes”

THEN buys_computer = “no”

Decision Trees



O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

124

Continuous features

With continuous features, we cannot have a separate branch for each value
→ use binary decision trees

Binary decision trees :

▪ For continuous feature A, a split is defined by 𝑣𝑎𝑙(𝐴) < 𝑋

▪ For categorical feature A, a split is defined by a subset 𝑋 ⊆ 𝑑𝑜𝑚𝑎𝑖𝑛(𝐴)

Decision Trees
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Continuous features

Age Car type Risk

23 family high

17 sports high

43 sports high

68 family low

32 truck low

20 family high

Continuous 

Feature

Categorical

Feature

Class

label
Age < 25

High

High

Car type in sports

Low

falsetrue

true false

Decision Trees
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Splitting continuous features

Approach :

▪ Sort the data according to feature value

▪ Determine the value of X which maximizes information gain by

scanning through the data items

A relevant decision point exists only where the class label changes!

0 1 2 3 4 5 6 7 8 9 10

P P P N N N P N N P P

Decision Trees
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Splitting continuous features

tid Age Risk

0 23 high

1 17 high

2 43 high

3 68 low

4 32 low

5 20 high

Reorder the 

data depending 

on Age

tid Age Risk

1 17 high

5 20 high

0 23 high

4 32 low

2 43 high

3 68 low

𝐺𝑎𝑖𝑛(𝐴)
= 𝐻(𝑃,𝑁) − 𝐻(𝐴)

𝐻(𝑃,𝑁) = −(
𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
)+

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖,𝑁𝑖)

Decision Trees
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128Decision Trees
Splitting continuous features

tid Age Risk

0 23 high

1 17 high

2 43 high

3 68 low

4 32 low

5 20 high

Reorder the 

data depending 

on Age

tid Age Risk

1 17 high

5 20 high

0 23 high

4 32 low

2 43 high

3 68 low

High Low

Count above 0 0

Count below 4 2

Position 0

𝐻(𝑃,𝑁) = 𝐻(4,2) = 0.918

𝐻(𝐴) = 0 + 1 × 𝐻(4,2) = 0.918

𝐺𝑎𝑖𝑛 = 0

𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁) − 𝐻(𝐴)
𝐻(𝑃,𝑁) = −(

𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
)+

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖,𝑁𝑖)
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129Decision Trees
Splitting continuous features

tid Age Risk

0 23 high

1 17 high

2 43 high

3 68 low

4 32 low

5 20 high

Reorder the 

data depending 

on Age

tid Age Risk

1 17 high

5 20 high

0 23 high

4 32 low

2 43 high

3 68 low

High Low

Count above 3 0

Count below 1 2

Position 3

𝐻(𝑃,𝑁) = 𝐻(4,2) = 0.918

𝐻(𝐴) = 0 +
1

2
× 𝐻(1,2) = 0.459

𝐺𝑎𝑖𝑛 = 0.918 − 0.459 = 0.459

𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁) − 𝐻(𝐴)
𝐻(𝑃,𝑁) = −(

𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
)+

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖,𝑁𝑖)
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130Decision Trees
Splitting continuous features

tid Age Risk

0 23 high

1 17 high

2 43 high

3 68 low

4 32 low

5 20 high

Reorder the 

data depending 

on Age

tid Age Risk

1 17 high

5 20 high

0 23 high

4 32 low

2 43 high

3 68 low

High Low

Count above 4 2

Count below 0 0

Position 6

𝐻(𝑃,𝑁) = 𝐻(4,2) = 0.918

𝐺𝑎𝑖𝑛 = 0

𝐻(𝐴) = 1 × 𝐻(4,2) + 0 = 0.918

𝐺𝑎𝑖𝑛(𝐴) = 𝐻(𝑃,𝑁) − 𝐻(𝐴)
𝐻(𝑃,𝑁) = −(

𝑃

𝑃 +𝑁
log2(

𝑃

𝑃 +𝑁
)+

𝑁

𝑃 +𝑁
log2(

𝑁

𝑃 +𝑁
))

𝐻(𝐴) = ∑
𝑖=1

𝑣 𝑃𝑖 +𝑁𝑖
𝑃 +𝑁

𝐻(𝑃𝑖,𝑁𝑖)
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Scalability of continuous feature splits

Naive implementation :

▪ At each step, the dataset is split in subsets that are associated with a tree node

Problem :

▪ For evaluating which continuous feature to split, data needs to be sorted according to

these features

▪ Becomes dominating cost

Decision Trees
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132Coding Decision Tree

Source: A primer to the 42 most commonly used ML algorithms
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Characteristics of decision tree induction

Automatic feature selection

Minimal data preparation

Non-linear model

Easy to interpret and explain

Sensitive to small perturbations 
in the data

Tend to overfit

No incremental updates

Decision Trees
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134Ensemble methods
Overview

Idea :

▪ Take a collection of simple or weak learners (decision tree for example)

▪ Combine their results to make a single, strong learner

Types :

▪ Bagging: train learners in parallel on different samples of the data, then

combine outputs through voting or averaging

▪ Stacking: combine model outputs using a second-stage learner like linear

regression

▪ Boosting: train learners on the filtered output of other learners

based on the hypothesis that combining multiple models together can often 
produce a much more powerful model 

Learn more : https://towardsdatascience.com/ensemble-methods-bagging-
boosting-and-stacking-c9214a10a205

https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
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135Ensemble methods
Bagging

Bagging = Bootstrap aggregating

Improve the stability and accuracy of machine learning algorithm

Reduces variance and helps avoid overfitting

See: https://en.wikipedia.org/wiki/Bootstrap_aggregating

https://en.wikipedia.org/wiki/Bootstrap_aggregating


O
. 

F
in

k
 /
A

. 
A

la
h

i

S
u
p

e
rv

is
e
d

le
a
rn

in
g

a
lg

o
ri
th

m
s

136Ensemble methods
Bootstrap

Method to generate multiple datasets with good statistical properties from an 
original dataset

Original data
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137Ensemble methods
Bootstrap

Method to generate multiple datasets with good statistical properties from an 
original dataset

Original data

Random sampling

Bootstrap sample 1
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138Ensemble methods
Bootstrap

Method to generate multiple datasets with good statistical properties from an 
original dataset

Original data

Random sampling

Bootstrap sample 1 Bootstrap sample 2
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139Ensemble methods
Random Forests

Learn K different decision trees from independent samples of the data (bagging) :

→ vote between different learners, so models should not be too similar

Aggregate output: majority vote
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140Ensemble methods
Sampling Strategies

Two sampling strategies are used to select the data on which the classifier is trained

→  Select a subset of the data → Each tree is trained on different data

Sampling data :

Sampling features :

→ Select a subset of features → corresponding nodes in different trees (usually) don’t 

use the same feature to split

each classifier (ex: tree) doesn’t see all the data and all 
the features!
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141Ensemble methods
Random Forests: Algorithm

1. Draw K bootstrap samples of size N from the original dataset, with replacement
(bootstrapping)

2. While constructing the decision tree, select a random set of m features out of the p features
available to infer split (feature bagging)

# of classifiers we train original size of the dataset
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142Coding Random Forest

Source: A primer to the 42 most commonly used ML algorithms
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143Ensemble methods
Conclusion

▪ Ensemble methods usually outperform individual decision trees, at the cost

of interpretability

▪ Few hyper-parameters to tune compared to neural nets

▪ Can reach very good performance with little tuning, especially on tabular data

(data structured in rows and columns) → use it as a strong baseline

▪ Libraries for ensemble methods (mostly gradient boosted trees):

scikit-learn, XGBoost and LightGBM

https://scikit-learn.org/stable/modules/ensemble.html#ensemble
https://xgboost.ai/
https://lightgbm.readthedocs.io/en/latest/
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144Decision Tree /Ensemble methods

Resources

▪ Python tutorial: 

▪ https://jakevdp.github.io/PythonDataScienceHandbook/05.08-random-

forests.html

▪ Maths of Bagging, Boosting and Ensemble Methods (Really optional): 

▪ ftp://ftp.math.ethz.ch/sfs/Manuscripts/buhlmann/handbook-cs-rev2010.pdf

https://jakevdp.github.io/PythonDataScienceHandbook/05.08-random-forests.html
ftp://ftp.math.ethz.ch/sfs/Manuscripts/buhlmann/handbook-cs-rev2010.pdf

