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Exam /presentation

= 15.05.25
= 45 min

= Without any supporting material

= Final project presentations
= 22.05.25 (ho class on 29.05 and no excercise on 30.05)

= Guest lecture on 08.05.25
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Recap: Basic principles neural network

Feedforward of information

llnput I-Iiidden ?utput
AN )

G DD- »,

Backpropagation of errors

Gradient descent

= Objective: The primary objective
of gradient descent is to find the
set of parameters that minimizes
the objective function.

= Gradient: The gradient of the
function at a particular point is a
vector that points in the direction
of the steepest ascent. By
moving in the opposite direction
of the gradient, we move
towards the minimum.
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Supervised learning

algorithms
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Summary

= Support Vector Machines

= Naive Bayes

= Decision trees

= Ensembles / bagging / boosting

26
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Example

Imagine a civil engineering project aimed at developing a new residential area near a hill
slope known for its landslide activity. An SVM model is trained using historical data on
landslides in the region, incorporating factors such as slope, soil type, rainfall intensity, and
vegetation cover. The trained model is then used to assess the susceptibility of the new
area to landslides, providing valuable information for planning and mitigation strategies,

such as reinforcing slopes or altering drainage patterns to reduce risk.

O. Fink /A. Alahi



=Pr-L

B Supervised learning algorithms

SVM

Introduction

Why this additional classification technique 7

>>> from sklearn import svm
>>> X = [[09 QJ, [1: 1]]

= Easy to implement and test >>> y = [0, 1]
_ >>> clf = svm.SVCQ)
= |t can provide good results on small datasets >>> clf.fit(X, y)

= Has sound theoretical guarantees
= |t allows for a geometric way to think about supervised learning
= A nice review of what we have learned related to loss functions, optimisation...
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SVM

Introduction

® : |label as 1
M : [abel as -1

Classification Algorithm

W
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Introduction

O. Fink /A. Alahi

® : label as 1 Classification Algorithm
B : |abel as -1
Which line?
Al -----
A2 ——
A:3
' A4 —

B Supervised learning algorithms
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SVM

Introduction

What's SVM?

Classification Algorithm
L

Maximization of the margin

3
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SVM

Introduction

Why Iis margin maximization interesting?

‘A’ far from the separation line

We are confident that ‘A’ is classified as blue

Small change in the separation line will
not change this classification

36
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W
oo

SVM

Introduction

O. Fink /A. Alahi

Why margin maximization is interesting?

‘B’ close from the separation line

We are less confident that ‘B’ is classified as blue

Small change in the separation line can
change this classification
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SVM

Hinge Loss

In this lecture:
- labels y € {—1,1}

- predicted values f(x) € R (also referred to as y)

f(x)<0

So:

f(x)>0

= y- f(x) > 0 —>correctly classified
* y- f(x) < 0 =incorrectly classified

N

W
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SVM

Hinge Loss
+ Correctly classified f (X) < ( f (X) > ()
+ Misclassified
— 4+ +
=
+ +

B Supervised learning algorithms

f (x) : Predicted value ( also referred as )
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Hinge Loss ;
+ Correctly classified yf(x) < () yf(x) > () o)
+ Misclassified
+ -+ -
+ +
+
— - =+
* +
T +

B Supervised learning algorithms

bringing all our misclassified points on one side of the decision boundary
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B Supervised learning algorithms

SVM

Optimal hyperplane separation
Link with the Hinge function Hinge(x,y) = max(0,1 —y.f(x)), labels y € {—1,1}

Hinge Loss
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B Supervised learning algorithms

SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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B Supervised learning algorithms

SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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B Supervised learning algorithms

SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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SVM
Optimal hyperplane separation

Link with the Hinge function

Hinge Loss
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SVM

Optimal hyperplane separation

Link with the Hinge function

Hinge Loss

The margin
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Alternative view of logistic regression

O. Fink /A. Alahi

Remember Logistic Loss function?

Logistic loss

1 N
=== _Zlyilog(yi)
[=

The Hinge Loss
nge(x y) = max(0,1 —y.f(x)),labels y € {—1,1}

« Maximum-margin » classifier

B Supervised learning algorithms
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SVM

Hinge Loss

logistic

Loss

yf(x)

MSE

1
MSE = —

n

n

Z(Yz ~-Y;)°

1=1

Left side of the Logistic loss

1 N
=== ZlYilOg(Yi)
=

N
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W

SVM ‘f’

Optimal hyperplane separation

O. Fink /A. Alahi

What's SVM?

Classification Algorithm

Based on maximizing margin

..... Margin : Defined as the width that the boundary
....... could increase by before hitting a datapoint
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Optimal hyperplane separation

How can we formulate this problem??

B Negative example : -1

@® Positive example : 1

B Supervised learning algorithms
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Optimal hyperplane separation

First we model our separation hyperplane

B Negative example : -1

@® Positive example : 1

B Supervised learning algorithms

95
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Optimal hyperplane separation

Then we model our margin limits

B Negative example : -1

@® Positive example : 1

wix+b=-1

B Supervised learning algorithms

wix+b=+1

N
(o))
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Optimal hyperplane separation

We obtain our constraints

B Negative example : -1

@® Positive example : 1

wix+b=-1

B Supervised learning algorithms

wix+b=+1

The margin on either side of the
hyperplane satisfy

wix+b=+1

5
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SVM

Optimal hyperplane separation

: _ 2
The margin between two classes is at least o
W

We obtain our objective criteria

Maximizing this condition is equivalent to minimizing @

L w4
Better to minimize a square form : -

(8]
oo
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Optimal hyperplane separation

We obtain an optimization problem:

2
min I w Objective

w,b

wix®W + b >1when y® =+1

WTx® 4 b < —1 when y® = 1| W' X©+b) = 1when i=12,...M Constraints

This is hard-margin SVM, and it works only for separable data

Next slides are optional and develop the formulation of
hard-margin SVM

B Supervised learning algorithms

o
o
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(@)
SN

Dealing with non-separable data

Constraints relaxed by
slack variables ¢;

O. Fink /A. Alahi

What should we do ?

O yOwTx® + b)) > 1 — ;5. t¢;
O O ° >0Vvi=12,....N
® O &1 ® M : number of examples in the margin
.. o g'e umber «
£, i or misclassified
3@ i O
- N We need to add a penalty for
-.' Y too large slack variable
@:
.- n " o S
min —
w,b 2 N =1 l

C > 0 weight the influence of the penalty term

Find trade off between maximizing margin and minimizing the classification errors
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o
o1

Dealing with non-separable data :
Control size of the margin E
Clwl® c N
min( +— ) i)

w,b 2 N j=1

Control number of misclassification

wixW +ph>1—& when y® = +1

\ ] T j .
wixW + b < —1+¢& when y = —1 yOWxW +b)>1—¢wheni=12,...,M

Note that: YO (WIxW +h)>1-§ & > 1 —yDwlixW + p)

Because &; > 0 Note that : §; = max(0,1 — y®O(wTx® + b))
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SVM

Dealing with non-separable data

Control size of the margin

Control number of misclassification

We can reformulate into a form more adapted for learning as :

Hinge loss

N A
min( ), max(0,1 — y(")x(")Tw) + =1 w %)

Regularization term

66

O. Fink /A. Alahi



=PrL SVM

Dealing with non-separable data

N
min( ), max(0,1 — y(”)x(n)TW)
W n=1

Leads to :
1. A separating hyperplane

2. A scaling of w so that no point of the data is in the margin

A ,
min(= |l w 1)
w 2

Guarantee that separating hyperplane and scaling for which
the margin is the largest

B Supervised learning algorithms

(o)
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SVM

Dealing with non-separable data

N A
min( ) max(0,1 — y(")x(n)Tw) + =1l w )
\%Y n=1 2

Note that this function is convex

S0 we can use SGD to optimize it efficiently

o
oo
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SVM

Dealing with non-separable data

To lead to a more efficient implementation
we use the dual form of our problem

A N

min( Y [1 - yMWxMWTw], + = | w [|?) «—— max min( ¥ a,(1 —y@®x™Tw) +

B Supervised learning algorithms

2 a€{0,1} w =1

Primal problem Dual problem

Two versions of the same problem

More explanation on duality for SVM

Note that : max (0, f(x)) = [f(x)]+

A

2

o
(e

O. Fink /A. Alahi

I w1%)


https://www.svm-tutorial.com/2016/09/duality-lagrange-multipliers/
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SVM
Dealing with non-separable data
- a (n)(n)T A 2
arg{%ﬁ}mvsn(nglan(l — yWx"Wiw) + > | w [[<)

The a,, are the support vectors !

The support vectors are the nearest
samples from the hyperplane

7

o

O. Fink /A. Alahi



—

=Pr-L SVM 7

Dealing with non-separable data :
; a (n)(n)T A 2 g
arg{%ﬁ}m‘tn(nglan(l — yUWx W iw) + > | w [[<)

a, =0when 1 — yWxMWTw < 0

Examples that lie on the correct side
and outside of the margin

B Supervised learning algorithms
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SVM
Dealing with non-separable data
3 () (MT 4 2
- L n n -
arg{%ﬁ}rr%n(nzlan[l y\Wx\iwl, + > | w {|)

a, € {0,1} when 1 — yMWxMWTw = 0

Examples that lie on the correct side
and just on of the margin

7

N

O. Fink /A. Alahi



=Pr-L

B Supervised learning algorithms

SVM

Dealing with non-separable data

N

max min( ¥ a,[1 —y®WxWTw] +& R4
a€{01} W =g T2

a, = 1when1—yM®WxMWTw > 0

Examples that lie strictly inside the
margin, or on the wrong side

7

W
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SVM

Dealing with non-linear classification

We introduce the kernel
trick

~J
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SVM

Dealing with non-linear classification

1
max all ——al YXX'Ya
aef0,11V 21

We saw that In this alternative formulation the data only enters In the
form of a “kernel” K = XX’

X:|N X D] with N the number of samples and D the number of features

By definition, a “kernel” K = XX' is equivalent to an inner product

There exists an infinity of inner products dependent to the geometry of
spaces where we use It

~J
(o
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SVM

Dealing with non-linear classification

|
max all ——alYXX'Ya

a € [0,11Y 24
T T T
X1X; Xi1Xy ... XXy
T T T
T T T

We can introduce a new inner product :

P(x) ' P(x1)  P(xp) P(xy)
K = P’ = ¢(X2)T¢(X1) ¢(X2)T¢(X2)

¢(XN)T¢(X1) ¢(XN)T¢(X2)

¢(X1)T¢ (XN)
¢(X2)T¢ (XN)

¢ (XN)T¢ (XN)

7

N
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Dealing with non-linear classification

We can introduce a new inner product :

B Px)  px)THY) .. Px)Th(xy)

K =@ = | 0)Tpx) dpx)Thp(x) ... Ppx)Th(xy) ¢

¢ (XN)T(/)(XI) (/)(XN)T(/)(XZ) .. (/)(XN)T(/)(XN) £ |
| / . / I :
@ © ® /,f. ------- P
O O A

Input Space Feature Space

This new inner product change the geometric aspect of our original problem and
can simplify the classification !

7
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SVM

Dealing with non-linear classification

© o -
o ° o |
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o " mEm B
© "OgEg_W 04
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Decision surface
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SVM

Dealing with non-linear classification
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SVM

Dealing with non-linear classification

Kernel

Linear

Sigmoid

Polynomial

RBF

KMOD

Exponential RBF

Equation

K(x,y)=xy

K(x,y) = tanh(axy + b)

K(x,y) = (14 xy)“
)4

K(xly) — a[eXp(Hx _yHZ 4+ Sl-gmaz)

K(x,y) = exp(—al|x — y||*)

K(x,y) = exp(—allx —y[])

1]

8

—
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SVM

Dealing with non-linear classification

Linear SVM_

~RBF 5VM

¥

RBF SVM

Poly SVM Sigmoid SVM
— .

47

Poly SV Sigmoid SVM

8
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Live demos:

Dash-gallery.plotly.host/dash-svm/
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SVM

Resources

Book chap. 12:

- https://mml-book.github.io/
Explanation video:

- https://www.youtube.com/watch?v=efR1C6CvhmE
Tutorial on SVM:

- http://lasa.epfl.ch/teaching/lectures/ML Phd/Notes/nu-SVM-SVR.pdf
Other slides on SVM:

- http://lasa.epfl.ch/teaching/lectures/ML Phd/Slides/SVM.pdf
Visualization:

- https://www.cristiandima.com/basics-of-support-vector-machines/

0
LS
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https://mml-book.github.io/
https://www.youtube.com/watch?v=efR1C6CvhmE
http://lasa.epfl.ch/teaching/lectures/ML_Phd/Notes/nu-SVM-SVR.pdf
http://lasa.epfl.ch/teaching/lectures/ML_Phd/Slides/SVM.pdf
https://www.cristiandima.com/basics-of-support-vector-machines/

O
o0

L
L'J

Iyelv "v/uld "0

0
O
>\
©
0
O
IN
©
<

swyjliobje buluies| pesiAledng m



=Pr-L

B Supervised learning algorithms

Example Structural Health Monitoring

= Let's consider a simplified case study where the goal is to develop a classifier to determine
the health status of a bridge based on two primary indicators: vibration frequency
deviations (measured in Hz) and maximum daily temperature variations (measured in
degrees Celsius). For simplicity, we classify the bridge's condition into three categories:

Good, Minor Damage, and Major Damage.

O. Fink /A. Alahi
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B Supervised learning algorithms

Example Structural Health Monitoring

= Data Assumption
= Assume we have historical data that indicate the following probabilities:
= Prior Probabilities of Each Condition:
e P(Good)=0.70
 P(Minor Damage)=0.20
 P(Major Damage)=0.10
= Likelihood of Vibration Frequency Deviations (Hz):
 Good Condition: Normally around 0.5 Hz deviation.
 Minor Damage: Deviations around 2 Hz.
 Major Damage: Deviations exceed 4 Hz.
= Likelihood of Maximum Daily Temperature Variation (° C):
 Good Condition: Variation within £5°C.
 Minor Damage: Variation within £10°C.
 Major Damage: Variation exceeds +15°C.

O. Fink /A. Alahi
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Example Structural Health Monitoring

= For simplicity, let's assume we categorize the deviations into "low," "medium," and "high"
for both features and assign probabilities based on our historical data.

=  Scenario:

= One day, sensors on the bridge report a vibration frequency deviation of 3 Hz and a
maximum daily temperature variation of 12 °C. We need to classify the bridge's condition

based on this data.

O. Fink /A. Alahi
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Naive Bayes
Bayes’ theorem

X : Features

y : Labels/Target

P(y|X) =

P(X|y)P(y)

P(X)

oo
(e
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Naive Bayes
Bayes’ theorem

Probability to label with y knowing X

N P(X|y)P(y)

P(y|X) = POX)

e
o
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Bayes’ theorem

O. Fink /A. Alahi

Probability to have this X knowing the label 'y

\

P(X|y)P(y)

P(y|X) = PO)

P(X|y) is called a generative model
Describes the way to produce data with the same Features distribution

B Supervised learning algorithms
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Naive Bayes
Bayes’ theorem

Probabillity to label with 'y

/

P(X|y)P(y)

P(y|X) = P(X)

P(y) is called the prior probability
Describes the probability to encounter the data labeled 'y
without considering the X

9

N
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Naive Bayes
Bayes’ theorem

P(y|X) =

P(X|y)P(y)

P(X)

AN

Probability of the X

O
W
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Naive Bayes
Bayes’ theorem

P(y|X) =

P(X|Y)P(y) This theorem gives us the probability
to be labeled with y knowing features
P(X) observation X

We can use this probability for classification

94
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Naive Bayes
Gaussian Naive Bayes

First we can make the assumption that the generative model follows
a simple gaussian distribution

u—0 v u+0

(L]
(&)
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Bayes’ theorem

The hard part is finding the generative model

We can make some simplifying assumptions about the form of this model

First assumption: the generative model follows a simple gaussian distribution

This i1s why these methods are called Naive

Second assumption: Features are independent !

B Supervised learning algorithms

({e]
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Gaussian Naive Bayes

Prior : P(BLUE) = ;98 = 0.53

@ Prior : P(RED) = ;88 = 0.47

Feature 2

Feature 1

B Supervised learning algorithms

N
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Gaussian Naive Bayes

P(Features2|RED) = 0.19 o
=
P(Features2|BLUE) = 0.000003 E: ®
®
o

B Supervised learning algorithms

! Feature 1

P(Features1|RED) = 0.004

P(Features1|BLUE) = 0.08

9

o0
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Gaussian Naive Bayes

P(Features2|RED) = 0.19 o
=
P(Features2|RED) = 0.000003 E: ®
O
O

B Supervised learning algorithms

- Feature 1

Prior X P(Features1|RED) X P(Features2|RED)
= 0.47 X 0.004 x 0.19
= 0.0003572

P(Features1|RED) = 0.004

P(Features1|BLUE) = 0.08

9

o)
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Gaussian Naive Bayes

Add In to avoid too small values
(source of computational error) !!

O. Fink /A. Alahi

O In(Prior X P(Features1|RED) X P(Features2|RED))
o ® = 1n(0.47) + In(0.004) + In(0.19)
o 00 = —7.94

In(Prior X P(Features1|BLUE) X P(Features2|BLUE))
= In(0.53) 4+ In(0.08) + In(0.000003)
= —15.9

P(Features2|RED) = 0.19

Feature 2

P(Features2|RED) = 0.000003

®.° —15.9 < -7.94
' We classify this new point as RED

! Feature 1
: P(Features1|RED) = 0.004

P(Features1|BLUE) = 0.08

B Supervised learning algorithms
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Example SHM cont.

= Let's simplify and assume:
= The probability of observing a 3 Hz deviation is:
e P(BHz|Good)=0.1
 P(3 Hz|Minor Damage)=0.7
 P(3 Hz|Major Damage)=0.2
= The probability of observing a 12 °C variation is:
e P(12°C|Good)=0.05
e P(12°C|Minor Damage)=0.6
e P(12°C|Major Damage)=0.35
= (Calculating Probabilities
= To classify the bridge's condition, we calculate the posterior probability for each condition using Bayes' theorem,
focusing on the product of the likelihood and the prior probability for simplicity.
= Let's calculate these probabilities.
= Based on the calculated probabilities, the bridge's health condition is classified as follows:
e Good: 3.7%
 Minor Damage: 88.9%
* Major Damage: 7.4%

O. Fink /A. Alahi
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Coding Naive Bayes |

from sklearn.nalive bayes import GaussianhB

from sklearn.datasets import make classification

+ Generate a sample dataset
£, ¥ = make classification(n samples=100, n features=Z, n i1nforma-

tive=:, n redundant=l)

t+ Create a Gaussian Nalve Bayes classifler

olf GausslianiB ()

# Fi1t the classifier to the data

clf.fit (X, ¥)

# Predict the cla=ss of new data

pred = clf.predict([[0, O), [1, L]])

# Output the predicted class

print (pred)

Source: A primer to the 42 most commonly used ML algorithms

=
N
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Naive Bayes
Resources

» Explanation with code

- https://jakevdp.qgithub.io/PythonDataScienceHandbook/05.05-naive-
bayes.htmi
* Interactive explanation (To understand Bayes’ theorem and the likelihood)

- https://seeing-theory.brown.edu/bayesian-inference/index.htmi
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B Supervised learning algorithms

Example: earthquake vulnerablility assessment

The goal of an earthquake vulnerability assessment is to evaluate how likely buildings or structures
are to be damaged in the event of an earthquake. This involves analyzing various factors such as the
building's age, construction material, height, design, the seismic zone where it's located, soil type, and
previous maintenance records. A Decision Tree model can be used to classify buildings into different
categories of vulnerability based on these factors.

=  Why Use Decision Trees for This Task?

= [nterpretability: Decision Trees provide clear and interpretable models, which is crucial for safety-
critical applications like structural engineering. Engineers and decision-makers can easily understand
the basis of the model's classifications.

= Handling Different Types of Data: Decision Trees can handle both humerical and categorical data,
making them suitable for the diverse types of data involved in earthquake vulnerability assessment.

= Nominear Relationships: They can model non-linear relationships between the factors affecting a

building's vulnerability to earthquakes, which is often the case in real-world scenarios.

O. Fink /A. Alahi
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B Supervised learning algorithms

Decision Trees
Introduction

What Is a decision tree?

The student loves this class

True False

: The student is slightly less
i
The student is awesome ! than awesome. :(

Split data based on the answer to a question
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B Supervised learning algorithms

Decision Trees
Terminology

Nodes are checked on a single feature / \
Branches are feature values /\ /\

107

O. Fink /A. Alahi



108

Dec

=Pr-L

Trees

ISION
Penguins example

Iyelv "v/uld "0

Z T
=5
nUan
| €—>
“ _
ZA T |
§ M
s = S - |
Tum.Qv = .
—
r_u..nnw S
=
. [
—d -
<<
O
O
—
5
o
W)
=
it
>
(&
o
p =
© . G O
O n O O G
Lo c©
ﬁd U C
o U - 10
o ® ® 0 O
0)
"N &
&
e
e
®)
-
0 g
-
(D)
£
>
@,
N
4
N
M

20 -
8
6
14 -

(ww) yadag uswind

swyjliobje buluies| pesiAledng m



=Pr-L

B Supervised learning algorithms

Decision Trees

Penguins example

Python output for sklearn.tree

Culmen length < 43.25 =  X[0] <= 43.25
gini = 0.636
samples = 256
value = [113, 51, 92]

RN

gini = 0.143
samples = 118

gini = 0.49
samples = 138

value = [109, 3, 6] value = [4, 48, 86]

AN

[Adelie, Chinstrap, Gentoo]
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Culmen length < 43.25

Gini coefficient in decision trees (also called Gini
impurity) is a measure of how mixed the classes are in
a node.

A Gini of 0 means the node is pure (all one class);
higher values indicate more impurity.

We select Culmen length as the first discriminative feature



110

ISion

Dec

=Pr-L

Trees

Penguins example

IYely v/ Muld O

55

50
Culmen Length (mm)

45

Q
o ©
S o
c C
L C
O O
@

(ww) yadsg uswin)

swyiliobje buluies| pesinledng m



=Pr-L

Decision Trees
Penguins example

Python output for sklearn.tree

/ \ / Culmen depth < 16.55

X[0] <= 43.25
gini = 0.636
samples = 256
value = [113, 51, 92]

X[1] <= 15.3
gini = 0.143
samples = 118
value = [109, 3, 6]

/ \

X[1] <= 16.55
gini = 0.49
samples = 138
value = [4, 48, 86]

/ \

B Supervised learning algorithms

gini = 0.0
samples = 6
value = [0, 0, 6]

gini = 0.052
samples = 112
value =[109, 3, 0]

gini = 0.024
samples = 82
value = [0, 1, 81]

[Adelie, Chinstrap, Gentoo]

gini = 0.283
samples = 56
value = [4, 47, 5]

Culmen depth < 15.3

Adelie

Culmen length < 43.25

Culmen depth < 16.55

—
—
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B Supervised learning algorithms

Decision Trees

Information gain

Features Label
age |income |student|credit rating | buys computer
<=30 nigh no fair no
<=30 nigh no excellent no

31...40 nigh no fair yes
>40 | medium no fair yes
>40 ow yes fair yes
>40 ow yes excellent no

31...40 ow yes excellent yes
<=30 |[medium no fair no
<=30 low yes fair yes
>40 |medium| vyes fair yes
<=30 |[medium| yes excellent yes

31...40 | medium no excellent yes

31...40 high yes fair yes
>40 | medium no excellent no

Which feature should we select for the root node ?

113
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B Supervised learning algorithms

Decision Trees

Information gain
Features Label

Income | student | credit ratin

excellent

excellent

31._40 an yes excellent yes

<—30 medium yes excellent yes

medium excellent

medium excellent

Which feature should we select for the root node ?

h

/ Partition based on feature « credit rating »
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B Supervised learning algorithms

Decision Trees
Information gain

Features Label
age |Income |student| credit rating | buys computer
<=30 high no fair no
<=30 high no excellent no

31...40 | high no fair yes
>40 | medium no fair yes
>40 ow yes fair yes
>40 ow yes excellent no

31...40 ow yes excellent yes
<=30 |medium no fair no
<=30 low yes fair yes
>40 |medium| vyes fair yes
<=30 |[medium| yes excellent yes

31...40 | medium no excellent yes

31...40 high yes fair yes
>40 | medium no excellent no

Which feature should we select for the root node ?

«—— Other possible partition based on
feature « student »

We have multiple choices of
partition

We need a method to select the
best feature to build our first
partition
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B Supervised learning algorithms

Decision Trees
Tree construction

» We select the most discriminative Feature
* Discriminative power based on a score:
* Information gain (ID3/C4.5)
o Gini impurity (CART)

= \We create a node based on this feature

 We repeat for each new branch until all the samples are
classified
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B Supervised learning algorithms

Scenario 1: Fair Coin

Suppose you have a fair coin, which has an equal probability (50% each) of landing on heads or
tails. In this case, the outcome is completely uncertain, and you have no better strategy than
guessing randomly. Here, the entropy, which measures the uncertainty or randomness in the

system, is at its maximum. In information theory, entropy for this scenario can be calculated as:

H(X) = — (5log, 5 + 3 log, 5) = 1 bit

Scenario 2: Biased Coin

Now, consider a biased coin that lands on heads 90% of the time and tails 10% of the time. The
outcome is more predictable because it's much more likely to be heads. The entropy in this case is

lower, reflecting the reduced uncertainty:

H(X) = —(0.9log,0.9 + 0.1log, 0.1) ~ 0.47 bits

O. Fink /A. Alahi
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B Supervised learning algorithms

Decision Trees
Information gain

At a given branch in the tree, the set of samples S to be classified has P positive
and N negative instances

| P | N 1 N
DN ng(P N) "D N ng(P n N))

Note : H(P, N) = 0 —No uncertainty ; H(P, N) = 1 —»Maximal uncertainty

The entropy of theset Sis : H(P,N) = —(

Feature A partitions S into S1, S2,..., Sy
The entropy of the feature Ais : H(A) = 3,
e entropy of the feature A is : =

The information gain obtained by splitting S using A is : Gain(A) = H(P,N) — H(A)

H(Pi) Nl)
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B Supervised learning algorithms

Decision Trees
Information gain

age |Income |student|credit rating | buys computer
<=30 nigh no fair no
<=30 nigh no excellent no
31...40 nigh no fair yes
>40 | medium no fair yes
>40 oW yes fair yes
>40 ow yes excellent no
31...40 ow yes excellent yes
<=30 |[medium no fair no
<=30 low yes fair yes
>40 | medium| vyes fair yes
<=30 |medium| yes excellent yes
31...40 | medium no excellent yes
31...40 high yes fair yes
>40 | medium no excellent no
H(P,N) =~ 108 () + 5 logy ()
H(A) = 5 H PN

We start by computing the entropy of each class

H(P,N) = H(9,5) = 0.94

Gain(A) = H(P,N) —H(A)
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B Supervised learning algorithms

Decision Trees

Information gain

age |Income |student| credit rating | buys computer
<=30 nigh no fair no
<=30 nigh no excellent no
31...40 nigh no fair yes
>40 | medium no fair yes
>40 ow yes fair yes
>40 ow yes excellent no
31...40 ow yes excellent yes
<=30 |medium no fair no
<=30 low yes fair yes
>40 |medium| vyes fair yes
<=30 |[medium| yes excellent yes
31...40 | medium no excellent yes
31...40 high yes fair yes
>40 | medium no excellent no

We compute the entropy of each sets

Age [<=30] H(2,3) = 0.97
Age [31...40] H(4,0) =0
Age [>40] H(3,2) = 0.97

Student [yes] H(6,1) = 0.59
Student [no] H(3,4) = 0.98

Income [high] H(2,2) =1
Income [med] H(4,2) = 0.92
Income [low] H(3,1) = 0.81

Rating [fair] H(6,2) = 0.81
Rating [exc] H(3,3) = 1
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B Supervised learning algorithms

Decision Trees
Information gain

age |Income |student| credit rating | buys computer
<=30 nigh no fair no
<=30 nigh no excellent no
31...40 nigh no fair yes
>40 | medium no fair yes
>40 ow yes fair yes
>40 ow yes excellent no
31...40 ow yes excellent yes
<=30 |medium no fair no
<=30 low yes fair yes
>40 |medium| yes fair yes
<=30 |[medium| yes excellent yes
31...40 | medium no excellent yes
31...40 high yes fair yes
>40 | medium no excellent no

We compute the entropy of each feature

H(age) = p([<= 30D H([<= 30]) + p([31...40DH([31...40]) + p([> 40D H ([> 4

H(income) = 0.91

H(student) = 0.78

H(rating) = 0.89

= 0.69

=
N
=
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B Supervised learning algorithms

Decision Trees

Information gain

age |Income |student| credit rating | buys computer
<=30 nigh no fair no
<=30 nigh no excellent no
31...40 nigh no fair yes
>40 | medium no fair yes
>40 ow yes fair yes
>40 ow yes excellent no
31...40 ow yes excellent yes
<=30 |medium no fair no
<=30 low yes fair yes
>40 |medium| vyes fair yes
<=30 |[medium| yes excellent yes
31...40 | medium no excellent yes
31...40 high yes fair yes
>40 | medium no excellent no

Finally we compute the gain

Gain(Age) = 0.94 — 0.69 = 0.25

Gain(Income) = 0.94 — 0.91 = 0.03
Gain(Student) = 0.94 — 0.78 = 0.16
Gain(Rating) = 0.94 — 0.89 = 0.05

The first node is split on the age

122

O. Fink /A. Alahi



=Pr-L

B Supervised learning algorithms

Decision Trees

Extracting classification rules from trees

Represent the knowledge in the form of IF-THEN rules

* One rule Is created for each path from the root to a leaf

» Each feature-value pair along a path forms a conjunction

» The leaf node holds the class prediction

Rules are easier for humans to understand

Example :

IF age = “<=30” AND student = “no”

IF age = “<=30” AND student = “yes”

IF age = “31...40”

IF age = >40” AND credit_rating = “excellent”
IF age = ">40” AND credit_rating = “fair’

THEN buys computer = “‘no”
THEN buys computer = “yes”
THEN buys computer = “yes”
THEN buys computer = “yes”
THEN buys _computer = “no”
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B Supervised learning algorithms

Decision Trees
Continuous features

With continuous features, we cannot have a separate branch for each value
— use binary decision trees

Binary decision trees

= For continuous feature A, a split is defined by val(4) < X

- For categorical feature A, a split is defined by a subset X © domain(A)
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=PrL  Decision Trees

g

Continuous features 5

L%

O
Continuous Categorical Class
Feature Feature label
Age Car type Risk

23 family nigh true false

43 sports nigh
68 family low true/\ raise
32 truck low Low

20 family high

B Supervised learning algorithms



=Pr-L

B Supervised learning algorithms

Decision Trees
Splitting continuous features

Approach :

» Sort the data according to feature value

» Determine the value of X which maximizes information gain by

scanning through the data items

A relevant decision point exists only where the class label changes!

10
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Decision Trees

Splitting continuous features

l:1P+N

tid Age | Risk
0 23 ngn Reorder the
1 17 nigh | data depending
2 43 nigh on Age
—
3 68 low
4 32 low
5 20 high
£
E)
©
e
©
& H(P,N) = | P N 1 N
i)_ (P,N) = _(P N ng(P_l_—N) TN ng(P_I_—N))
C?) 1% P. )
- H(A) = ¥ ——H(P, N)

tid Age | Risk
1 17 nigh
5 20 nigh
0 23 nigh
4 32 low
2 43 high
3 68 low
Gain(A)

= H(P,N) — H(A)
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Decision Trees
Splitting continuous features

=1 P

+ N

tid Age | Risk
0 23 ngh Reorder the
1 17 nigh | data depending
2 43 nigh on Age
——
3 638 low
4 32 low
5 20 | high
E
E)
S
Sk
©
'% H(P,N) = ] P N ] N
é (P,N) = _(P N ng(P_l_—N) TN ng(P_I_—N))
%
O v P+ N
HA) = X H(P;, N;)

tid Age | Risk
1 17 nigh
5 20 nigh
0 23 nigh
4 32 low
2 43 high
3 68 low

Position 0
- High Low
Count above 0 0
Count below 4 2

H(P,N) = H(4,2) = 0.918

H(A) =0+ 1x H(4,2) = 0918

Gain = 0

Gain(A) = H(P,N) —H(A)
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Decision Trees
Splitting continuous features

=1 P

+ N

tid Age | Risk
0 23 ngh Reorder the
1 17 nigh | data depending
2 43 nigh on Age
——
3 638 low
4 32 low
5 20 | high
E
E)
S
Sk
©
'% H(P,N) = ] P N ] N
é (P,N) = _(P N ng(P_l_—N) TN ng(P_I_—N))
%
O v P+ N;
HA) = X H(P;, N;)

Position 3
High Low
Count above 3 0
Count below 1 2

tid Age | Risk
1 17 nigh
5 20 nigh
0 23 nigh
4 32 low
2 43 high
3 68 low

H(P,N) = H(4,2) = 0.918

1
H(A) = 0+ x H(L,2) = 0459

Gain = 0.918 — 0.459 = 0.459

Gain(A) = H(P,N) — H(A)
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Decision Trees
Splitting continuous features

=1 P

+ N

tid Age | Risk
0 23 ngh Reorder the
1 17 nigh data depending
2 43 nigh on Age
—
3 68 low
4 32 low
5 20 | high
E
E)
o
o
©
'% H(P,N) = ] P N ] N
é (P,N) = _(P N ng(P_l_—N) TN ng(P_I_—N))
D
O v P+ N
HA) = X H(P;, N;)

Position 6
High Low
Count above 4 2
Count below 0 0

tid Age | Risk
1 17 nigh
5 20 nigh
0 23 nigh
4 32 low
2 43 high
3 68 low

H(P,N) = H(4,2) = 0.918

H(A) =1x H(4,2)+ 0 = 0.918

Gain(A) = H(P,N) —H(A)

Gain = 0
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B Supervised learning algorithms

Decision Trees
Scalability of continuous feature splits

Naive implementation :

= At each step, the dataset Is split in subsets that are associated with a tree node

Problem :
» For evaluating which continuous feature to split, data needs to be sorted according to
these features

 Becomes dominating cost

=
W
=
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132

Coding Decision Tree

from sklearn import datasets

O. Fink /A. Alahi

from sklearn import tree

§ Load the 1ris dataset
irls = datasets.load 1ris()

X = 1ris.data

]
=
=~
(WP
wn
rt
[¥1
~

QO
n
rt

1\,‘
-

f Train a decision tree classifiex

¥

clf = tree.DecisionTreeClassifier ()

clf = clf.fit (X, y)

#+ Predict the class for a new sample
sample = [[5, 4, 3, 2]]
prediction = clf.predict(sample)

print (prediction)

B Supervised learning algorithms

Source: A primer to the 42 most commonly used ML algorithms
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B Supervised learning algorithms

Decision Trees
Characteristics of decision tree induction

+

Automatic feature selection Sensitive to small perturbations
INn the data

Minimal data preparation Tend to overfit

Non-linear model No incremental updates

Easy to interpret and explain

133

O. Fink /A. Alahi



=Pr-L

B Supervised learning algorithms

Ensemble methods
Overview

based on the hypothesis that combining multiple models together can often
produce a much more powerful model

ldea
» Take a collection of simple or weak learners (decision tree for example)
» Combine their results to make a single, strong learner

Types:

 Bagging: train learners in parallel on different samples of the data, then
combine outputs through voting or averaging

» Stacking: combine model outputs using a second-stage learner like linear
regression

» Boosting: train learners on the filtered output of other learners

Learn more : https://towardsdatascience.com/ensemble-methods-bagging-
boosting-and-stacking-c9214a10a205
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B Supervised learning algorithms

Ensemble methods
Bagging

Bagging = Bootstrap aggregating

Improve the stability and accuracy of machine learning algorithm

Reduces variance and helps avoid overfitting

09 ¢
©00% 0%

!
0000@®
90000

!
00000
00000

See: https://en.wikipedia.org/wiki/Bootstrap aggregating

Original Data

Bootstrapping

Aggregating

Bagging
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https://en.wikipedia.org/wiki/Bootstrap_aggregating
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B Supervised learning algorithms

Ensemble methods
Bootstrap

Method to generate multiple datasets with good statistical properties from an
original dataset
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P

=

L Ensemble methods

Bootstrap

Random sampling

\

CELXIYY)

Bootstrap sample 1
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=PrL  Ensemble methods

Bootstrap

Method to generate multiple datasets with good statistical properties from an
original dataset

Random sampling

\ \

Bootstrap sample 1 Bootstrap sample 2

B Supervised learning algorithms
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B Supervised learning algorithms

Ensemble methods
Random Forests

Learn K different decision trees from independent samples of the data (bagging) :
— vote between different learners, so models should not be too similar

Aggregate output: majority vote
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Sampling Strategies

Two sampling strategies are used to select the data on which the classifier Is trained
Sampling data

— Select a subset of the data — Each tree is trained on different data

Sampling features :

— Select a subset of features — corresponding nodes Iin different trees (usually) don’t
use the same feature to split

each classifier (ex: tree) doesn’t see all the data and all
the features!

B Supervised learning algorithms
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Random Forests: Algorithm

# of classifiers we train original size of the dataset

1. Draw K| bootstrap samples of size N from the original dataset, with replacement
(bootstrapping)

2. While constructing the decision tree, select a random set of m features out of the p features
avallable to infer split (feature bagging)

B Supervised learning algorithms

=
D
=
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B Supervised learning algorithms

Coding Random Forest

from sklearn.ensemble import RandomForestClassifiler

from sklearn import datasets

#+ Load a =sample dataset

1rlis = datasets.load 1ri=()

X, = iris.data, 1ris.target

L'::

# Create a random forest classifier

I:-:

# Fi1t the model teo the data

clf. Fit (X, ¥)

# Predict on a new sample
= new = [[5, 3.2, 1.2, 0.2]]

print(clfi.predict{x new))
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RandombPorestClassifier(n estimators=100, random state=[)

Source: A primer to the 42 most commonly used ML algorithms
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B Supervised learning algorithms

Ensemble methods
Conclusion

Ensemble methods usually outperform individual decision trees, at the cost
of Interpretabllity

Few hyper-parameters to tune compared to neural nets

Can reach very good performance with little tuning, especially on tabular data
(data structured in rows and columns) — use It as a strong baseline

Libraries for ensemble methods (mostly gradient boosted trees):

scikit-learn, XGBoost and LightGBM
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https://scikit-learn.org/stable/modules/ensemble.html#ensemble
https://xgboost.ai/
https://lightgbm.readthedocs.io/en/latest/

=
=

B Supervised learning algorithms

PrL

Decision Tree /Ensemble methods
Resources

 Python tutorial:
- https://jakevdp.github.io/PythonDataScienceHandbook/05.08-random-
forests.html
 Maths of Bagging, Boosting and Ensemble Methods (Really optional):

- ftp://ftp.math.ethz.ch/sfs/Manuscripts/buhimann/handbook-cs-rev2010.pdf
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